Institutionen för fysik och astronomi

Disputation: Opportunities and challenges of surface scattering at next generation neutron sources

  • Datum: 25 maj, kl. 13.30
  • Plats: Häggsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala
  • Doktorand: Adlmann, Franz Alois
  • Om avhandlingen
  • Arrangör: Materialfysik
  • Kontaktperson: Adlmann, Franz Alois
  • Disputation


Complex fluids and soft matter are ubiquitously found in the world and all contacts in life are made over surfaces. To describe the mechanical behavior of such substances, rheological methods are used. Flow instabilities are a big challenge in rheology since they will be reflected in the macroscopic variables probed, like e. g. the viscosity. Many such discontinuities may actually originate at the surface. Investigating the properties of liquids in contact with the surface under mechanical load is the main course of the thesis. Neutron reflectometry and GISANS are perfect tools in this context to access the solid liquid interfaces, since they can penetrate many engineering materials and show a comparably large scattering potential at deuterated samples. In this thesis shear was applied on a model solution and neutron scattering techniques were used to investigate the structure under load. The focus was set on the development of the measurement methods themselves to enable new scientific insights in the future. First, by stroboscopic measurements the flux limitations are overcome for oscillatory rheology. By reintegration in the post processing it is shown that kinetic measurements with neutrons are possible with a time resolution below one millisecond. Second, the transformation of grazing incidence data from the laboratory system into q-space is strongly non-linear resulting in a need for re-binning. In this thesis a universal tool has been developed for this purpose. Finally, there is an ongoing discussion on depth sensitive neutron scattering experiments from solid-liquid boundaries. By using emission densities we show that such experiments face severe limitations due to the low absorption cross section of the neutron.