Seminarium: Cerium Oxide Surfaces: Defect Structure and Their Role as Support in Catalysis: A Theoretical Perspective

  • Datum: –12.00
  • Plats: Ångströmlaboratoriet Å73121
  • Föreläsare: M. Verónica Ganduglia-Pirovano, Instituto de Catálisis y Petroleoquímica, Madrid
  • Arrangör: Avdelningen för materialteori, institutionen för fysik och astronomi
  • Kontaktperson: Natalia Skorodumova
  • Seminarium

Ceria (CeO2) is the most significant of the oxides of rare-earth metals in industrial catalysis. Deep understanding of the oxygen defect structure of ceria surfaces under reducing conditions is essential to tailor their functionality in catalytic applications. For the CeO2(111) surface, whether oxygen vacancies prefer the subsurface or the surface and if surface oxygen vacancies attract or repel, are still heavily debated. Also, a number of ordered phases have been observed upon reduction, namely, (√7 × √7) R19.1o, (√7 × 3) R19.1o, (3 × 3), (√3 × √3)R30o, and (4 × 4), but their structures have remained elusive. Here, supported by experimental and theoretical results, the current understanding of the structure of the CeO2-x (111) surface will be discussed [1-6].

Furthermore, the role of ceria as support in the catalytic activity of metal-ceria systems is not fully understood. Its non-innocent role will be here discussed using ceria-supported metal nanoparticles as experimental and theoretical model catalysts. Co- and Ni-ceria systems will be used as examples of catalysts for methane dry reforming with CO2 to produce syngas, a relevant process from the environmental standpoint [7-9]. Ni-ceria will also be considered for hydrogen production [10] and the direct conversion of methane to methanol [11].

[1] Ganduglia-Pirovano, M. V.; Da Silva, J. L. F.; Sauer, J. Phys. Rev. Lett. 2009, 102, 026101.

[2] Jerratsch, J. F.; Shao, X.; Nilius, N.; Freund, H. J.; Popa, C.; Ganduglia-Pirovano, M. V.; Burow, A. M.; Sauer, J. Phys. Rev. Lett. 2011, 106, 246801.

[3] Murgida G. E.; Ganduglia-Pirovano, M. V. Phys. Rev. Lett. 2013, 110, 246101.

[4] Olbrich, R.; Murgida, G. E.; Ferrari, V.; Barth, C.; Llois, A. M.; Reichling, M.; Ganduglia-Pirovano, M. V. J. Phys. Chem. C 2017, 121, 6844.

[5] Han, Z.-K.; Yang, Y.-Z.; Zhu, B.; Ganduglia-Pirovano, M. V.; Gao, Y. Phys. Rev. Materials 2018, 2, 035802.

[6] Murgida, G. E.; Ferrari, V.; Llois, A. M.; Ganduglia-Pirovano, M. V. Phys. Rev. Materials 2018, 2, 083609.

[7] Liu, Z.; Grinter, D. C.; Lustemberg, P. G.; Nguyen-Phan, T.-D.; Zhou, Y.; Luo, S.; Waluyo, I.; Crumlin, E. J.; Stacchiola, D. J.; Zhou, J.; Carrasco, J.; Busnengo, H. F.; Ganduglia-Pirovano, M. V.; Senanayake, S. D.; Rodriguez, J. A. Angew. Chem., Int. Ed. 2016, 55, 7455.

[8] Lustemberg, P. G.; Ramírez, P. J.; Liu, Z.; Gutiérrez, R. A.; Grinter, D. G.; Carrasco, J.; Senanayake, S. D.; Rodriguez, J. A.; Ganduglia-Pirovano, M. V. ACS Catal. 2016, 6, 8184.

[9] Liu, Z.; Lustemberg, P. G. ̧ Gutiérrez, R. A. ̧ Carey, J. J.; Palomino, R. M.; Vorokhta, M.; Grinter, D. C.; Ramírez, P. J.; Matolín, V.; Nolan, M.; Ganduglia-Pirovano, M. V.; Senanayake, S. D.; Rodriguez, J. A. Angew. Chem. Int. Ed. 2017, 56, 13041.

[10] Carrasco, J.; López-Durán, D.; Liu, Z.; Duchoň, T.; Evans, J; Senanayake, S. D.; Crumlin, E. J.; Matolín, V; Rodriguez, J. A.; Ganduglia-Pirovano, M. V. Angew. Chem. Int. Ed. 2015, 54, 3917.

[11] Lustemberg, P. G.; Palomino, R. M.; Gutiérrez, R. A.; Grinter, D. C.; Vorokhta, M.; Liu, Z.; Ramírez, P. J.; Matolín, V.; Ganduglia-Pirovano, M. V.; Senanayake, S. D.; Rodriguez, J. A. J. Am. Chem. Soc. 2018, 140, 7681.