Generating series of all modular graph forms from iterated Eisenstein integrals


Authors: Jan E. Gerken, Axel Kleinschmidt, Oliver Schlotterer

Preprint number: UUITP-09/20

We study generating series of torus integrals that contain all so-called modular graph forms relevant for massless one-loop closed-string amplitudes. By analysing the differential equation of the generating series we construct a solution for its low-energy expansion to all orders in the inverse string tension $\alpha'$. Our solution is expressed through initial data involving multiple zeta values and certain real-analytic functions of the modular parameter of the torus. These functions are built from real and imaginary parts of holomorphic iterated Eisenstein integrals and should be closely related to Brown's recent construction of real-analytic modular forms. We study the properties of our real-analytic objects in detail and give explicit examples  to a fixed order in the $\ap$-expansion. In particular, our solution allows for a counting of linearly independent modular graph forms at a given weight, confirming previous partial results and giving predictions for higher, hitherto unexplored weights. It also sheds new light on the topic of uniform transcendentality of the $\alpha'$-expansion.